Matematikanë

Time linjë Photos Para Pulla Sketch Kërkimi

Giuseppe Peano

Datlindja:

Vendin e lindjes:

Data e vdekjes:

Vendi i vdekjes:

27 Aug 1858

Cuneo, Piemonte, Italy

20 April 1932

Turin, Italy

Prezantimi Wikipedia
ATTENTION - Automatic translation nga versioni anglisht

Giuseppe Peano prindërit s 'ka punuar në një fermë dhe Xhuzepe ka lindur në shtëpi në fermë' rreth 5 km Tetto Galant 'nga Cuneo. Ai ndoqi shkollën e fshatit në Spinetta pastaj ai u ngjit në shkollë në Cuneo, duke e bërë udhëtimin 5 km atje dhe përsëri në këmbë çdo ditë. Prindërit e tij bleu një shtëpi në Cuneo, por i ati i tij vazhdoi të punonte në fushat Tetto Galant me ndihmën e një vëlla dhe motër e Xhuzepe, ndërsa nëna e tij qëndruan në Cuneo me Xhuzepe dhe vëllain e tij të vjetër.

Nënës Giuseppe kishte një vëlla që ishte prift dhe një avokat në Torino dhe, kur ai e kuptoi se Xhuzepe ishte një fëmijë shumë i talentuar, ai e mori atë në Torino në 1870 për shkollimin e tij të mesme dhe për përgatitjen e tij për studime universitare. Giuseppe mori provimeve në Ginnasio Cavour në 1873 dhe pastaj ishte një nxënës në Liceo Cavour nga ku ai u diplomua në 1876 dhe, në atë vit, ai hyri në Universitetin e Torinos.

Në mesin e mësuesve Peano në vitin e tij të parë në Universitetin e Torinos u D'Ovidio i cili mësoi atij gjeometri analitike dhe algjebër. Në vitin e tij të dytë ai u mësoi gur nga Angelo Genocchi dhe gjeometria deskriptive nga Giuseppe Bruno. Peano vazhdoi të studiojnë matematikën e pastër në vitin e tij të tretë dhe zbuloi se ai ishte nxënës vetëm për të bërë këtë. Të tjerët kanë vazhduar studimet e tyre në Shkollën Inxhinierike që Peano vetë kishte menduar fillimisht për të bërë. Në vitin e tij të tretë Francesco Faà di Bruno mësoi atij të analizave dhe D'Ovidio mësoi gjeometri. Ndër mësuesit e tij në vitin e tij të fundit ishin përsëri D'Ovidio me një kurs gjeometri më tej dhe Francesco Siacci me një kurs mekanikë. Më 29 shtator 1880 Peano diplomuar si doktor i matematikës.

Peano u bashkua me stafin në Universitetin e Torinos në 1880, duke u emëruar si asistent D'Ovidio. Ai herë të parë publikohet letra e tij matematikore në 1880 dhe më tej tre gazeta të vitit të ardhshëm. Peano u emërua asistent Genocchi për 1881-82 dhe kjo ishte në 1882 se Peano bërë një zbulim i cili do të jetë tipike e stilit të tij për shumë vite, ai zbuloi një gabim në një përkufizim standart.

Genocchi ishte nga kjo kohë mjaft të vjetër dhe në shëndetin relativisht i varfër dhe Peano mori përsipër disa nga doktrina e tij. Peano ishte gati të mësojë studentët për zonën e një sipërfaqe lakuar kur ai e kuptoi se definicioni në Serret 's libër, i cili ishte tekst standard për sigurisht, ishte i gabuar. Peano menjëherë tha Genocchi e zbulimit të tij për të thënë se Genocchi tashmë e dinte. Genocchi kishte qenë i informuar vitin e mëparshëm nga Shvarc që duket se ka qenë i parë për të gjetur Serret 's gabim.

Në 1884 kishte publikuar një tekst në bazë të Genocchi 's leksione në Torino. Kjo Kursi libër në Infinitezimale gur edhe pse bazuar mbi Genocchi 's ligjëratave është redaktuar nga Peano dhe në të vërtetë ka shumë në të shkruar nga vetë Peano. Libri vetë shtetet në ballinë që ajo është:

... publikuar me Futjet nga Dr Giuseppe Peano.

Genocchi dukej disi i kënaqur që puna doli nën emrin e tij sepse ai ka shkruar:

... vëllim përmban Futjet më të rëndësishme, disa modifikime, dhe Annotations të ndryshme, të cilat janë vendosur të parë. Pra, se asgjë nuk do t'i atribuohet për mua që nuk më takon mua, unë duhet të deklaroj se unë nuk kanë pasur pjesë në hartimin e librit të lartpërmendur dhe se çdo gjë është që për shkak të shquar riu Giuseppe Peano Dr ...

Peano marrë kualifikimin e tij për t'u bërë profesor universiteti në dhjetor 1884 dhe ai vazhdoi të mësojë kurse më tej, disa për Genocchi shëndetësore e të cilit nuk e kishte gjetur të mjaftueshme për të lejuar atë të kthehet në Universitetin.

Në 1886 Peano vërtetuar se nëse f (x, y) është i vazhdueshëm i parë pas ekuacioni diferencial për dy / dx = f (x, y) ka një zgjidhje. Ekzistenca e zgjidhjeve me hipoteza të fortë në f ishte dhënë më parë nga Cauchy dhe pastaj Lipschitz. Katër vjet më vonë Peano tregoi se zgjidhjet nuk ishin unik, duke i dhënë si shembull dy ekuacioni diferencial / dx = 3 y 2 / 3, me y (0) = 0.

Përveç mësimit të tij në Universitetin e Torinos, Peano filloi pedagog në Akademinë Ushtarake në Torino në 1886. Vitit të ardhshëm ai të zbuluara dhe të botuara, një metodë për zgjidhjen e sistemeve të ekuacioneve diferenciale lineare duke përdorur përafërta të njëpasnjëshme. Megjithatë Emile Picard ka zbuluar këtë metodë në mënyrë të pavarur dhe kishte merita Shvarc me zbulimin Metoda e parë. Në 1888 botoi librin Peano gjeometrike gur e cila fillon me një kapitull në logjikën matematikore. Kjo ishte punë e tij të parë në temën që do të luajnë një rol të rëndësishëm në kërkimet e tij gjatë viteve të ardhshme dhe kjo ishte bazuar në punën e Schröder, Boole dhe Charles Peirce. Një tipar më i rëndësishëm i librit është se në të Peano përcakton me qartësi të madhe idetë e Grassmann që me siguri ishin vendosur në një mënyrë mjaft i panjohur nga Grassmann vetë. Ky libër përmban përkufizimin e parë të dhënë një hapësirë vektoriale me një simbol modern dhe stil të mrekullueshëm dhe, megjithëse nuk u vleresuan nga shumë në kohë, kjo është sigurisht një arritje krejt të shquar nga Peano.

Në 1889 botoi Peano aksiomat e tij të famshëm, i quajtur aksiomat Peano, të cilat përcaktohen numrat natyror në drejtim të sets. Këto janë botuar në një pamflet Principia Arithmetices, yll i ri methodo exposita e cila, sipas të ishin:

... menjëherë një pikë referimi në historinë e logjikës matematikore dhe themelet e matematikës.

Broshurë ishte shkruar në latinisht dhe askush nuk ka qenë në gjendje të japë një arsye të mirë për këtë, të tjerë se:

... duket të jetë një akt i romantizmi i lehtë, ndoshta akti unik romantike në karrierën e tij shkencore.

Genocchi vdiq në 1889 dhe Peano pritet të jetë caktuar për të mbushur karrige e tij. Ai i shkroi Casorati, që ai besonte të jetë pjesë e komisionit emërimit, për informacion vetëm për të zbuluar se ka pasur një vonesë për shkak të vështirësisë për të gjetur anëtarët e mjaftueshme për të vepruar në komision. Casorati ishte afruar, por shëndeti i tij nuk ishte deri në detyrë. Para emërimit të mund të bëhet Peano publikohet një tjetër rezultat mahnitëse.

Ai shpiku 'hapësirë-mbushje' kthesa në 1890, këto janë të vazhdueshme mappings surjective nga [0,1] mbi sheshin njësi. Hilbert, në vitin 1891, e përshkroi hapësirë të ngjashme rëndësishëm kthesa. Ajo kishte menduar se është kthesa të tilla nuk mund të ekzistojnë. Cantor kishte treguar se ka një bijection midis intervalit [0,1] dhe njësi katrore, por, menjëherë pas, netto kishte provuar se një bijection nuk mund të jetë e vazhdueshme. Hapësirë të vazhdueshme Peano-kthesa mbushje nuk mund të jetë 1-1 sigurisht, ndryshe netto 's teorema do të e kundërshtoi. Hausdorff shkroi për rezultat Peano në Grundzüge der Mengenlehre në 1914:

Kjo është një nga faktet më të shquar e teorise se bashkesive.

Në dhjetor 1890 Peano prisni për të emëruar për të Genocchi 's ishte mbi karrige kur, pasi konkurrenca e zakonshme, Peano ishte ofruar post. Në 1891 Peano themeluar Rivista di Matematica, një ditar kushtuar kryesisht për logjikën dhe bazat e matematikës. Letër e parë në pjesën e parë dhjetë artikull është një faqe nga Peano përmbledhur punën e tij në logjikë matematike deri në atë kohë.

Peano kishte një aftësi të madhe në shohim se teorema ishin të pasaktë nga diktim përjashtime. Të tjerët nuk ishin aq të lumtur që këto gabime vënë në dukje dhe një i tillë ishte kolegu i tij Corrado Segre. Kur Corrado Segre paraqiti një artikull të Rivista di Matematica Peano vuri në dukje se disa nga Teorema në nenin kishte përjashtime. Segre nuk ishte i përgatitur për të korrigjuar vetëm teorema duke shtuar kushtet që përjashtoi përjashtime, por mbrojti punën e tij duke thënë se momenti i zbulimit ishte më e rëndësishme se një formulim rigoroz. Sigurisht, ky ishte aq rigoroz kundër qasjes Peano për matematikë se ai argumentoi fuqishëm:

Unë besoj se të re në historinë e matematikës që autorët me vetëdije përdorim në propozimet e tyre kërkimore për të cilat përjashtime janë të njohur, ose për të cilat ata nuk kanë prova ...

Nuk ishte vetëm Corrado Segre i cili vuan nga aftësia e shquar Peano në vend mungesa e ashpërsi. Sigurisht ishte precize e të menduarit të tij, duke përdorur përpikëri matematikore e logjikës së tij, që i dha Peano kjo qartësi e mendimit. Peano vuri në dukje një gabim në një provë nga Hermann Laurent në 1892 dhe, në të njëjtin vit, shqyrtoi një libër duke i dhënë fund Veronese shqyrtim me koment:

Ne mund të vazhdojmë në gjatësi numėruar absurditete që autori ka grumbulluar. Por këto gabime, mungesa e saktësi dhe ashpërsi të gjithë libri të gjithë vlerën e larguar prej saj.

Nga rreth 1.892, Peano hynë në një projekt të ri dhe jashtëzakonisht ambicioz, pikërisht Mathematico Formulario. Ai shpjegoi në pjesën e marsit të 1892 Matematica Rivista di mendimin e tij:

Nga dobia më e madhe do të ishte e publikimin e koleksioneve të gjitha Teorema e njohur tani që i referohen të degëve të caktuar të shkencave matematikore ... Ky koleksion, i cili do të jetë e gjatë dhe e vështirë në gjuhën e zakonshme, është bërë një masë më të lehtë duke përdorur simbol e logjikës matematike ...

Në shumë mënyra këtë ide madh shënon fundin e punës së jashtëzakonshme krijuese Peano së. Kjo ishte një projekt që u prit me entuziazëm nga disa dhe me pak interes nga shumica. Peano filloi duke u përpjekur për të kthyer të gjithë ata përreth tij për të besuar në rëndësinë e këtij projekti dhe kjo ka pasur efektin e bezdisshëm tyre. Megjithatë Peano dhe bashkëpunëtorëve të tij të ngushtë, duke përfshirë edhe asistentë të tij, Vailati, Burali-Forti, Pieri dhe Fano shpejt u bë e përfshirë thellësisht me punë.

Kur përshkruar një botim të ri të Mathematico Formulario në 1896 Peano shkruan:

Çdo profesor do të jetë në gjendje të miratojë këtë Formulario si një tekst, për atë duhet të përmbajë të gjitha teorema dhe të gjitha metodat. Mësimdhënie e tij do të reduktohet për të treguar se si të lexuar formula, dhe për të treguar për studentët Teorema se ai dëshiron të shpjegojë në kursin e tij.

Kur vëllimi gur i Formulario u publikua Peano, pasi ai kishte treguar, filluan ta përdorin atë për mësimin e tij. Kjo ishte një fatkeqësi që do të presim. Peano, i cili ishte një mësues i mirë kur ai filloi karrierën e tij pedagog, u bë e papranueshme për të dy studentët e tij dhe kolegët e tij me stilin e mësimin e tij. Një nga studentët e tij, i cili ishte në fakt një admirues i madh i Peano, ka shkruajtur:

Por ne studentët e dinte se ky mësim ishte mbi kokat tona. Ne kuptohet se një analizë të tillë delikate të koncepteve, të tilla një minutë kritika të përcaktimeve të përdorura nga autorë të tjerë, nuk ishte e përshtatur për fillestar, dhe sidomos nuk ishte e dobishme për studentët e inxhinierisë. Ne papëlqyeshme që të jap kohë dhe përpjekje për të "simbole" që në vitet më vonë ne nuk mund të përdorë.

Akademinë Ushtarake dha fund kontratës së tij për të mësuar aty në 1901 dhe megjithëse shumë prej kolegëve të tij në universitet do të pëlqente gjithashtu të ndaluar mësimin e tij atje, se asgjë nuk është e mundur në mënyrë që universiteti u ngrit. Profesori ishte një ligj vetëm në veten e tij dhe subjekt Peano nuk ishte përgatitur për të dëgjuar kolegët e tij kur ata u përpoqën për ta inkurajuar atë për t'u kthyer në stilin e tij të vjetër të mësimdhënies. Projekti Mathematico Formulario u përfundua në vitin 1908 dhe një ka për të admirojnë atë Peano arritur, por edhe pse puna përmbante një minierë informacioni është përdorur pak.

Megjithatë, ndoshta triumfi më i madh Peano erdhi në 1900. Në këtë vit kishte dy kongreset e mbajtur në Paris. Parë ishte Kongresi Ndërkombëtar i Filozofisë e cila u hap në Paris më 1 gusht. Kjo ishte një triumf për Peano dhe Russell, i cili mori pjesë në Kongresin, shkroi në autobiografinë e tij:

Kongresi ishte pikë kthese e jetës sime intelektuale, sepse atje kam takuar Peano. Unë tashmë e njihnin me emrin dhe kishte parë disa e punës së tij, por nuk kishte marrë mundimin tė zotit simbol të tij. Në diskutimet në Kongresin e kam vërejtur se ai ishte gjithmonë më të saktë se kushdo tjetër, dhe se ai e mori pa ndryshim më të mirë të asnjë argument në të cilin ai e filloi. Sa ditë shkoi nga, kam vendosur që kjo duhet të jetë për shkak të logjikës së tij matematikore. ... Kjo u bë e qartë për mua se simbol i tij dhënë një instrument të analizës logjike të tillë si unë kishte kërkuar me vite ...

Ditë pas Filozofi Kongresi përfundoi Kongresin e dytë ndërkombëtar të matematikanëve filloi. Peano qëndroi në Paris, për Kongresin dhe për të dëgjuar Hilbertit 's flasin vendosjen nga dhjetë e 23 problemeve që u shfaqën në gazeta e tij që kanë për qëllim dhënien e rendit të ditës për shekullin e ardhshëm. Peano ishte i interesuar veçanërisht në problemin e dytë e cila kërkoi nëse aksiomat e aritmetike mund të provohet në përputhje.

Edhe para se projekti Mathematico Formulario u përfundua Peano ishte vënë në vend të projekt tjetër të madh të jetës së tij. Në 1903 Peano shprehur interes për të gjetur një gjuhë universale, dhe ndërkombëtare, dhe propozoi një gjuhë artificiale "flexione latin sinus" bazuar në latinisht, por hoqi të gjitha gramatikore. Ai hartuar fjalorin duke marrë fjalë nga anglisht, frëngjisht, gjermanisht dhe latinisht. Në fakt edicionin e fundit të Mathematico Formulario ishte shkruar në flexione Latino sine që është një tjetër arsye puna ishte aq pak të përdorura.

Karriera Peano ishte pra tepër e ndarë në dy periudha cuditerisht. Periudhë deri në 1900 është një ku ai tregoi origjinalitet e madhe dhe një të ndjehen të shquar për tema të cilat do të jenë të rëndësishme në zhvillimin e matematikës. Arritjet e tij ishin të jashtëzakonshme dhe ai kishte një stil krejt modern në vendin e vet në kohën e tij. Megjithatë, kjo ndjeni për atë që dukej se ishte e rëndësishme për të lënë atë dhe pas 1900 ai punoi me entuziazëm të madh në dy projektet e vështirësi të mëdha të cilat ishin të mëdha ndërmarrjet por provuar mjaft e parëndësishme në zhvillimin e matematikës.

E personalitetit të tij Kennedy shkruan në:

... Unë jam i hipnotizuar nga personaliteti i tij i butë, aftësia e tij për të tërhequr dishepujt e përjetshëm, toleranca e tij e dobësi të njeriut, optimizmin e tij shumëvjeçare. ... Peano nuk mund të klasifikohet si një matematikan i shekullit të 19-të dhe logician, por për shkak të origjinalitetit të tij dhe ndikimit, duhet të gjykohet një nga shkencëtarët e madhe e këtij shekulli.

Edhe pse Peano është një themelues i logjikës matematikore, filozof gjerman matematikore Gottlob Frege është sot konsiderohet si babai i logjikës matematike.

Source:School of Mathematics and Statistics University of St Andrews, Scotland